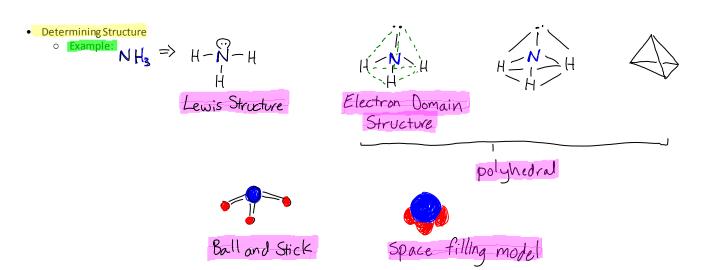
Notes 01/11

Friday, January 11, 2008 9:59 AM

Notes 0111

Audio recording started: 10:00 AM Friday, January 11, 2008

Continuing from last lecture's question - Ranking size of the following:


Negative ions are larger than element Positive ions are smaller than element.

Let's consider electrons in ions/elements:

Let's consider the # of protons:

So in increasing size:
$$0^{2-} < F^{-} < Ne^{-} < Na^{+} < Mg^{2+}$$

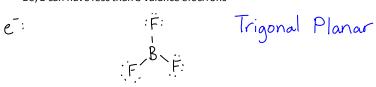
This is an isoelectronic series since they all have same number of electrons

Geometry

netry			
# of e domain	Geometry	Angle	Example
1	Rod ×~~		N ₂
2	Linear 180°	180	CO ₂
3	Triangular (20°	120	
4	Tetrahedron	109.5	
5	Trigonal bipyramidal Y,,, 17 Y: equitorial 2: axial Lone pairs, double bonds, or bulky ligands placed on the Y position	90, 120	
6	Octahedral	90	

• Steps to determine structure:

of valence electrons


- Assign a geometry
 - ☐ High symmetry is preferred

□ Octet Rule

Cover lone pairs and determine shape

o Example: BF₃

■ Be, B can have less than 8 valance electrons

○ Example: NO₂-

$$e^{-1.5+2(6)+1=18e^{-1.5}}$$

$$\left[\begin{array}{c}
0.5 & 0.5 \\
0.5 & 0.5
\end{array}\right]$$
Bent

- There can be several seemingly correct structures. Formal Charge helps us determine which is
- Example: CH₃

Example: NCl₃

o Example: H₂O

Example: PCl₅

Example: SF₄:

Example CIF₃:

Loan pairs are being put into equatorial because they are bulkiest